por Miembro del equipo de TrueSocialMetrics ~ 6 min
¡Los datos nunca serán perfectos! Ahí lo he dicho. Alguien tenía que hacerlo. Si tiene dificultades para mostrarle un informe a su jefe porque los datos aún son imperfectos, hágalo rápido, quítelo como un parche :) Es mejor tomar decisiones imperfectas hoy que tomar decisiones perfectas mañana cuando su empresa ya está muerto (bueno, tal vez no esté muerto, pero un poco de dramatización te ayudará a entender mi punto). Simplemente perderá la ventana de oportunidad si está esperando la perfección. Es tan simple como eso.
Sé por experiencia propia que esta noción es difícil de aceptar. Cuando escribo un artículo, siempre tengo esa sensación de comezón de que no es matemática, estadística, moral (o lo que sea) 100% exacto. Pero luego mi cofundador se me acerca y me pregunta dónde está el artículo genial que le prometí hace unas semanas. Y le digo que no puedo terminar el contenido porque todavía es imperfecto. Luego tiene esa mirada aterradora en su rostro como si quisiera golpearme muy fuerte :) ¡Solo déjalo ir! Datos útiles no es igual a 100% perfecto.
Quiero decir, solo mira Google Analytics, por ejemplo. No muestra datos para una sesión al 100 %, sino entre el 80 % y el 90 %. Y anula las fuentes de los usuarios. Estudiar cómo almacena datos en su interior me dejó boquiabierto. Tal vez el muestreo y la anulación de la fuente hacen que los datos en GA sean imperfectos, pero aún así son estadísticamente significativos y válidos. La imperfección de los datos no siempre es igual a la invalidez de los datos. Incluso Mighty Google Analytics no es perfecto. Así que la próxima vez que sienta que su ojo derecho tiembla debido a la imperfección de los datos, déjelo pasar :)
Por supuesto, existen algunos límites estrictos en el análisis que no debe dejar pasar, pero la mayoría de las imperfecciones de los datos pueden pasarse por alto por el bien de la decisión oportuna. Esfuércese por obtener los mejores datos que pueda obtener, pero no pase toda su vida esperando la perfección; trabaja con lo que tienes ahora.
No lo analices en exceso.
Cuando mires algún número, siempre piensa en el contexto. Dale me gusta si tienes 50 comentarios con 100 fans, felicidades por tu regla, y si tienes 50 comentarios con 1,000,000 de fans, hombre, estás en problemas.
Como aquella vez que analicé la página de Facebook de Fifty Shades of Grey, tenían 6 millones de fans y 4000 comentarios en cada publicación. Se ve increíble, ¿eh? Pero cuando miré estos comentarios, el 99% de ellos eran spam. Ahora puedes imaginar cuántos de estos fanáticos son zombis y reducen todas sus estadísticas al menos a la mitad.
¿Qué te dice ver el número simple de Me gusta? Nada. Tengo 30 Me Gusta. ¿Cuántas publicaciones tienes? ¿Y cuántos seguidores? ¿Y cómo les va a los competidores con la misma cantidad de publicaciones y seguidores? Se deben tener en cuenta tantos factores, porque cambiarán la imagen drásticamente.
Ves a dónde me dirijo: el contexto cambia la imagen.
No lo pases por alto.
Su sitio, página de redes sociales o marca son como un cuarto oscuro: no tiene idea de lo que sucede dentro, cómo interactúan los clientes con su producto, qué piensan sobre su contenido, etc. Es decir, hasta que enciendes la linterna de la analítica. De repente, puede ver que los clientes odiaban sus publicaciones sobre el Super Bowl y sus proverbios inspiradores, pero les encantaban sus videos tontos sobre gatos; que tuvieron problemas para suscribirse a su boletín en un sitio y no tienen idea de cómo navegar por la página de precios.
Pero eso es solo una parte del trato. No solo informe lo que sucedió; informar qué hacer a continuación. Cuando estás enterrando a tu jefe bajo un montón de cifras, es como este cuarto oscuro para él nuevamente, dale la linterna, dile qué hacer a continuación en función de estos datos. Las recomendaciones son la parte más importante del informe.
Incluso si nadie verá sus horas de excavación en datos aproximados, pero verá una oración de recomendación simple y procesable: "Necesitamos invertir más en videos de gatos tontos: nos ayudan a vender más donas, contratemos un video de gatos". gurú” - todavía vale la pena. Si no muestra las acciones recomendadas en su informe, es como hacer que hagan todo el trabajo que ha hecho nuevamente. Ha pasado horas tratando de averiguar qué sucedió y qué debemos hacer a continuación, y luego está cargando una pista de cifras en sus colegas y espera hasta que las analicen nuevamente en sus cabezas para descubrir qué hacer a continuación. Para evitar tales escollos, le recomendamos encarecidamente que lea el artículo de Avinash Kaushik sobre el tema The Difference Between Web Reporting And Web Analysis para ver ejemplos asombrosos de informes con recomendaciones.
Informe sin acciones recomendadas = análisis inconcluso.
Vaya más allá de las cifras y gráficos a acciones y recomendaciones.
No lo analices demasiado.
No lo pases por alto.
Ir más allá de las cifras.